skip to main content


Search for: All records

Creators/Authors contains: "Schmidt, Jennifer I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Increased wildfire activity has raised concerns among communities about how to assess and prepare for this threat. There is a need for wildfire hazard assessment approaches that capture local variability to inform decisions, produce results understood by the public, and are updatable in a timely manner. We modified an existing approach to assess decadal wildfire hazards based primarily on ember dispersal and wildfire proximity, referencing landscape changes from 1984 through 2014. Our modifications created a categorical flammability hazard scheme, rather than dichotomous, and integrated wildfire exposure results across spatial scales. We used remote sensed land cover from four historical decadal points to create flammability hazard and wildfire exposure maps for three arctic communities (Anchorage and Fairbanks, Alaska and Whitehorse, Yukon). Within the Fairbanks study area, we compared 2014 flammability hazard, wildfire exposure, and FlamMap burn probabilities among burned (2014–2023) and unburned areas. Unlike burn probabilities, there were significantly higher in exposure values among burned and unburned locations (Wilcoxon;p < 0.001) and exposure rose as flammability hazard classes increased (Kruskal–Wallis;p < 0.001). Very high flammability hazard class supported 75% of burned areas and burns tended to occur in areas with 60% exposure or greater. Areas with high exposure values are more prone to burn and thus desirable for mitigation actions. By working with wildfire practitioners and communities, we created a tool that rapidly assesses wildfire hazards and is easily modified to help identify and prioritize mitigation activities.

     
    more » « less
  2. Abstract

    Currently, more than half of the world’s human population lives in urban areas, which are increasingly affected by climate hazards. Little is known about how multi-hazard environments affect people, especially those living in urban areas in northern latitudes. This study surveyed homeowners in Anchorage and Fairbanks, USA, Alaska’s largest urban centers, to measure individual risk perceptions, mitigation response, and damages related to wildfire, surface ice hazards, and permafrost thaw. Up to one third of residents reported being affected by all three hazards, with surface ice hazards being the most widely distributed, related to an estimated $25 million in annual damages. Behavioral risk response, policy recommendations for rapidly changing urban environments, and the challenges to local governments in mitigation efforts are discussed.

     
    more » « less
  3. Food, energy, and water (FEW) security require adequate quantities and forms of each resource, conditions that are threatened by climate change and other factors. Assessing FEW security is important, and needs to be understood in the context of multiple factors. Existing frameworks make it hard to disentangle the contributors to FEW insecurity and to determine where best to expend efforts on short- and long-term solutions. We identified four consistent components of FEW security (availability, access, preference, quality). This framework provides detailed and nuanced insights into factors that limit or bolster security in each of the three sectors. The integrated framework identifies proximate and ultimate underlying causes of deficiencies in each security component providing opportunities to identify short- and long-term solutions. 
    more » « less
  4. null (Ed.)